
1

Bits, Bytes and Integers

Introduction to Computer Systems

https://xjtu-ics.github.io/

Danfeng Shan
Xi’an Jiaotong University

3

Today: Bits, Bytes, and Integers

Representing information as bits
Bit-level manipulations
Integers

Representation: unsigned and signed
Conversion, casting
Expanding, truncating
Addition, multiplication, shifting

Representations in memory, pointers, strings

4

Everything is bits

Each bit is 0 or 1
By encoding/interpreting sets of bits in various ways

Computers determine what to do (instructions)
… and represent and manipulate numbers, sets, strings, etc…

Why bits? Electronic Implementation
Easy to store with bistable elements (双稳态器件)
Reliably transmitted on noisy and inaccurate wires

0.0V
0.2V

0.9V
1.1V

0 1 0

5

For example, can count in binary

Base 2 Number Representation
Represent 1521310 as 111011011011012

Represent 1.2010 as 1.0011001100110011[0011]…2

Represent 1.5213 × 104 as 1.11011011011012 × 213

6

Encoding Byte Values

Byte = 8 bits
Binary 000000002 to 111111112

Decimal: 010 to 25510

Hexadecimal 0016 to FF16

Base 16 number representation
Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
Write FA1D37B16 in C as

– 0xFA1D37B
– 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary

15213: 0011 1011 0110 1101

3 B 6 D

8

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit

char 1 1

short 2 2

int 4 4

long 4 8

float 4 4

double 8 8

pointer 4 8

9

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit

char 1 1

short 2 2

int 4 4

long 4 8

float 4 4

double 8 8

pointer 4 8

10

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit

char 1 1

short 2 2

int 4 4

long 4 8

float 4 4

double 8 8

pointer 4 8

“ILP32” “LP64”

11

Today: Bits, Bytes, and Integers

Representing information as bits
Bit-level manipulations
Integers

Representation: unsigned and signed
Conversion, casting
Expanding, truncating
Addition, multiplication, shifting

Representations in memory, pointers, strings

12

Boolean Algebra

Developed by George Boole in 19th Century
Algebraic representation of logic
Encode “True” as 1 and “False” as 0

And

A&B = 1 when both A=1 and B=1
Or

A|B = 1 when either A=1 or B=1 or both

Not

~A = 1 when A=0
Exclusive-Or (Xor)

A^B = 1 when A=1 or B=1, but not both

& 0 1

0 0 0

1 0 1

| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0

~ 0 1

1 0

13

General Boolean Algebras

Operate on Bit Vectors
Operations applied bitwise

01101001
& 01010101

01000001

01101001
| 01010101

01111101

01101001
^ 01010101

00111100
~ 01010101

1010101001000001 01111101 00111100 10101010

14

Bit-Level Operations in C

Operations &&, ||, ~~, ^̂ Available in C
Apply to any “integral” data type

long, int, short, char, unsigned
View arguments as bit vectors
Arguments applied bit-wise| 010101012 → 011111012

15

Contrast: Logic Operations in C

Contrast to Bit-Level Operators
Logic Operations: &&, ||, !

View 0 as “False”
Anything nonzero as “True”
Always return 0 or 1
Early termination

Examples (char data type)
!0x41 → 0x00
!0x00 → 0x01
!!0x41→ 0x01

0x69 && 0x55 → 0x01
0x69 || 0x55 → 0x01
p && *p

Watch out for && vs. & (and || vs. |)…
Super common C programming pitfall!

(avoids null pointer access)

16

Shift Operations

Left Shift: x << y
Shift bit-vector x left y positions

– Throw away extra bits on left
Fill with 0’s on right

Right Shift: x >> y
Shift bit-vector x right y positions

Throw away extra bits on right
Logical shift

Fill with 0’s on left
Arithmetic shift

Replicate most significant bit on left

Undefined Behavior
Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

17

Today: Bits, Bytes, and Integers

Representing information as bits
Bit-level manipulations
Integers

Representation: unsigned and signed, negation
Conversion, casting
Expanding, truncating
Addition, multiplication, shifting

Representations in memory, pointers, strings

18

Question?

iinntt ffoooo == --11;;
uunnssiiggnneedd bbaarr == 11;;

((ffoooo << bbaarr)) ==== ttrruuee ??

19

Encoding “Integers”

Examples (w = 5)

Unsigned Signed (twos complement)

Sign Bit

±16 8 4 2 1

0 1 0 1 0

16 8 4 2 1

1 0 1 1 0
-16 8 4 2 1

0 + 8 + 0 + 2 + 0 =

B2U(𝑥𝑥) = (
!"#

$%&

𝑥𝑥! ⋅ 2!
Given a bit
vector 𝑥𝑥,
𝑤𝑤 bits long…

B2T 𝑥𝑥 = −𝑥𝑥$%& ⋅ 2$%& + (
!"#

$%'

𝑥𝑥! ⋅ 2!

−16 + 0 + 4 + 2 + 0 =

16 + 0 + 4 + 2 + 0 =

10

22

−10

20

Negation: Complement & Increment
Negate through complement and increase
~x + 1 == -x

Why?
-x + x == 0 (by definition)
~x + x == 1111…111 == -1
~x + x + 1 == 0
(~x+1) + x == 0
~x+1 == -x

1 0 0 1 0 11 1x

0 1 1 0 1 00 0~x+

1 1 1 1 1 11 1−1

Example: x = 15213

21

Complement & Increment Examples

𝒙𝒙 = 𝑻𝑻𝐦𝐦𝐦𝐦𝐦𝐦

𝒙𝒙 = 𝟎𝟎

Oops!
It’s still

negative!

22

Eight negative
values:

−1, − 2, …, − 8

Eight non-
negative values:

0, 1, …, 7

Mathematicians
would prefer it
if a 4-bit signed
number could
represent values
−8…8, but that’s
2(+ 1 values, so
they won’t all fit.

What if we made
a 4-bit signed
number only
represent values
−7…7? Then we
wouldn’t be using
bit pattern 1000…

23

Today: Bits, Bytes, and Integers

Representing information as bits
Bit-level manipulations
Integers

Representation: unsigned and signed, negation
Conversion, casting
Expanding, truncating
Addition, multiplication, shifting

Representations in memory, pointers, strings

24

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

s u
X

Mapping Between Signed & Unsigned

U2T
U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

u s
X

Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

25

+ + + + + +• • •

- + + + + +• • •

u

s

w–1 0

Relation between Signed & Unsigned

Large positive weight
becomes

Large negative weight

U2T
U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

su
X

26

Mapping Signed «« Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

±16

27

0

TMax

TMin

–1

–2

0

UMax

UMax – 1

TMax

TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized
2’s Comp. ®® Unsigned

Ordering Inversion
Negative ® Big Positive

28

Signed vs. Unsigned in C
Constants

By default are considered to be signed integers
Unsigned if have “U” as suffix
0U, 4294967259U

Casting
Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

Implicit casting also occurs via assignments and procedure calls
tx = ux; int fun(unsigned u);
uy = ty; uy = fun(tx);

29

Question?

iinntt ffoooo == --11;;
uunnssiiggnneedd bbaarr == 11;;

ffoooo << bbaarr ==== ttrruuee ??

example02.c

30

Casting Surprises
Expression Evaluation

If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned
Including comparison operations <, >, ==, <=, >=
Examples:

Constant 1 Constant 2 Relation Evaluation

0 0U

-1 0

-1 0U

INT_MAX INT_MIN

(unsigned)INT_MAX INT_MIN

-1 -2

(unsigned)-1 -2

INT_MAX ((unsigned)INT_MAX) + 1

INT_MAX (int)(((unsigned)INT_MAX) + 1)

==

<

>

>

<

>

>

<

>

Unsigned

Signed

Unsigned

Signed

Unsigned

Signed

Unsigned

Unsigned

Signed

31

Summary
Casting Signed ↔ Unsigned: Basic Rules

Bit pattern is maintained
But reinterpreted
Can have unexpected effects: adding or subtracting 2w

Expression containing signed and unsigned int
int is cast to unsigned!!

32

Today: Bits, Bytes, and Integers

Representing information as bits
Bit-level manipulations
Integers

Representation: unsigned and signed, negation
Conversion, casting
Expanding, truncating
Addition, multiplication, shifting

Representations in memory, pointers, strings

33

Question?

iinntt xx == 00xx88000000;;
sshhoorrtt ssxx == ((sshhoorrtt)) xx;;
iinntt yy == ssxx;;

example03.c

34

Sign Extension and Truncation
Sign Extension

Truncation

Make k copies of
sign bit

Chop off k highest
bits

35

Sign Extension: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

10 =

-32 16 8 4 2 1

0 0 1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

-32 16 8 4 2 1

1 1 0 1 1 0-10 =

Positive number Negative number

36

Truncation: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

6 =

-8 4 2 1

0 1 1 0

Sign change

2 =

-16 8 4 2 1

0 0 0 1 0

2 =

-8 4 2 1

0 0 1 0

-6 =

-16 8 4 2 1

1 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

No sign change

37

Question?

iinntt xx == 00xx88000000;;
sshhoorrtt ssxx == ((sshhoorrtt)) xx;;
iinntt yy == ssxx;;

example03.c

38

Today: Bits, Bytes, and Integers

Representing information as bits
Bit-level manipulations
Integers

Representation: unsigned and signed
Conversion, casting
Expanding, truncating
Addition, multiplication, shifting

Representations in memory, pointers, strings

39

Unsigned Addition

Standard Addition Function
Ignores carry output

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

1110 1001
+ 1101 0101

E9
+ D5

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

He
x
De
cim
al

Bin
ary

233
+ 213

unsigned char

40

Unsigned Addition

Standard Addition Function
Ignores carry output

• • •

• • •

• • •

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits

1110 1001
+ 1101 0101
1 1011 1110

1011 1110

E9
+ D5
1BE
BE

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

He
x
De
cim
al

Bin
ary

233
+ 213

446
190

unsigned char

u

v+

u + v

UAddw(u , v)

41

! " # A % &! &" &#
!

"

#
A

%
&!

&"
&#

!

#

%

&"

&A

"!

"#

"%

'"

()*+I+-./001*12)

Visualizing (Mathematical) Integer Addition

Integer Addition
4-bit integers u, v
Compute true sum
Add4(u , v)
Values increase
linearly with u and v
Forms planar surface

Add4(u , v)

u

v

42

! " # $ % &! &" &#
!

"

#
$

%
&!

&"
&#

!

"

#

$

%

&!

&"

&#

&$

Visualizing Unsigned Addition

Wraps Around
If true sum ≥ 2w

At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow

43

Two’s Complement Addition

TAdd and UAdd have Identical Bit-Level Behavior
Signed vs. unsigned addition in C:
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v

Will give s == t

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

1110 1001
+ 1101 0101
1 1011 1110

1011 1110

E9
+ D5
1BE
BE

-23
+ -43

-66
-66

44

-8 -6 -4 -2 0 2 4 6
!"

!#

!$
!%

&
%

$
#

!"

!#

!$

!%

&

%

$

#

"

Visualizing 2’s Complement Addition

Values
4-bit two’s comp.
Range from -8 to +7

Wraps Around
If sum ³ 2w–1

Becomes
negative
At most once

If sum < –2w–1

Becomes
positive
At most once

TAdd4(u , v)

u

v

PosOver

NegOver

45

TAdd Overflow

Functionality
True sum requires
w+1 bits
Drop off MSB
Treat remaining bits
as 2’s comp. integer

–2w –1

–2w

0

2w –1–1

2w–1

True Sum

TAdd Result

1 000…0

1 011…1

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver

46

Today: Bits, Bytes, and Integers

Representing information as bits
Bit-level manipulations
Integers

Representation: unsigned and signed
Conversion, casting
Expanding, truncating
Addition, multiplication, shifting

Representations in memory, pointers, strings

47

Shifting

Left Shift: x << y
Shift bit-vector x left y
positions
Throw away extra bits on left
Fill with 0’s on right
Equivalent to multiplying by 2!

Right Shift: x >> y
Shift bit-vector x right y
positions
Throw away extra bits on right
Two kinds:

“Logical”: Fill with 0’s on left
“Arithmetic”: Replicate most
significant bit on left

Almost equivalent to dividing
by 2!

Undefined Behavior (in C)
Shift amount < 0 or ≥ word size

Argument x 01100010

<< 3 00010000

Logical >> 2 00011000

Arithmetic >> 2 00011000

Argument x 10100010

<< 3 00010000

Logical >> 2 00101000

Arithmetic >> 2 11101000

48

Multiplication
Goal: Computing Product of w-bit numbers x, y

Either signed or unsigned

But, exact results can be bigger than w bits
Unsigned: up to 2w bits

Result range: 0 ≤ x * y ≤ (2w – 1) 2 = 22w – 2w+1 + 1
Two’s complement min (negative): Up to 2w-1 bits

Result range: x * y ≥ (–2w–1)*(2w–1–1) = –22w–2 + 2w–1

Two’s complement max (positive): Up to 2w bits, but only for (TMinw)2

Result range: x * y ≤ (–2w–1) 2 = 22w–2

So, maintaining exact results…
would need to keep expanding word size with each product computed
is done in software, if needed

49

Unsigned Multiplication in C

Standard Multiplication Function
Ignores high order w bits

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •

1110 1001
* 1101 0101
1100 0001 1101 1101

1101 1101

E9
* D5
C1DD

DD

233
* 213

49629
221

50

Signed Multiplication in C

Standard Multiplication Function
Ignores high order w bits
Some of which are different for signed
vs. unsigned multiplication
Lower bits are the same

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)

• • •

-23
* -43

989
-35

1110 1001
* 1101 0101
0000 0011 1101 1101

1101 1101

E9
* D5
03DD

DD

51

Power-of-2 Multiply with Shift

Operation
u << k gives u * 2k

Both signed and unsigned

Examples
u << 3 == u * 8
(u << 5) – (u << 3) == u * 24
Most machines shift and add faster than multiply

Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u

2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

52

Today: Bits, Bytes, and Integers

Representing information as bits
Bit-level manipulations
Integers

Representation: unsigned and signed
Conversion, casting
Expanding, truncating
Addition, multiplication, shifting

Representations in memory, pointers, strings

53

Byte-Oriented Memory Organization

Programs refer to data by address
Imagine all of RAM as an enormous array of bytes
An address is an index into that array

A pointer variable stores an address

System provides a private address space to each “process”
A process is an instance of a program, being executed
An address space is one of those enormous arrays of bytes
Each program can see only its own code and data within its enormous array
We’ll come back to this later (“virtual memory” classes)

• • •
00
••
•0

FF
••
•F

54

Machine Words

Any given computer has a “Word Size”
Nominal size of integer-valued data

and of addresses

Historically, most machines used 32 bits (4 bytes) as word size
Limits addresses to 4GB (232 bytes)

Currently, machines have 64-bit word size
Potentially, could have 16 EB (exabytes) of addressable memory
That’s 18.4×10/0 bytes

Machines still support multiple data formats
Fractions or multiples of word size
Always integral number of bytes

55

Addresses Always Specify Byte Locations

Address of a word is address of
the first byte in the word

Addresses of successive words
differ by 4 (32-bit) or 8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

56

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8

58

Byte Ordering

So, how are the bytes within a multi-byte word ordered in
memory?
Conventions

Big Endian: Sun, PPC Mac, network packet headers
Least significant byte has highest address

Little Endian: x86, ARM processors running Android, iOS, and
Windows

Least significant byte has lowest address

59

Byte Ordering Example

Example
Variable x has 4-byte value of 0x01234567
Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

60

Representing Integers
Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D
3B
00
00

IA32, x86-64

3B
6D

00
00

Sun

int A = 15213;

93
C4
FF
FF

IA32, x86-64

C4
93

FF
FF

Sun

Two’s complement
representation

int B = -15213;

long int C = 15213;

00
00
00
00

6D
3B
00
00

x86-64

3B
6D

00
00

Sun
6D
3B
00
00

IA32

In
cr

ea
si

ng

ad
dr

es
se

s

61

Examining Data Representations

Code to Print Byte Representation of Data
Casting pointer to unsigned char * allows treatment as a byte array

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
size_t i;
for (i = 0; i < len; i++)

printf(”%p\t0x%.2x\n",start+i, start[i]);
printf("\n");

}

62

show_bytes Execution Example

int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00

63

Representing Pointers

Different compilers & machines assign different locations to objects

Even get different results each time run program

int B = -15213;
int *P = &B;

x86-64Sun IA32
EF

FF

FB

2C

AC

28

F5

FF

3C

1B

FE

82

FD

7F

00

00

64

char S[6] = "18213";

Representing Strings

Strings in C
Represented by array of characters
Each character encoded in ASCII format

Standard 7-bit encoding of character set
Character “0” has code 0x30

– Digit i has code 0x30+i
String should be null-terminated

Final character = 0

Compatibility
Byte ordering not an issue

IA32 Sun
31

38

32

31

33

00

31

38

32

31

33

00

65

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx
8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx
804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Representing x86 machine code

x86 machine code is a sequence of bytes
Grouped into variable-length instructions, which look like strings…
But they contain embedded little-endian numbers…

Example Fragment

Deciphering Numbers
Value: 0x12ab

Pad to 32 bits: 0x000012ab

Split into bytes: 00 00 12 ab

Reverse: ab 12 00 00

