QQEf

Overview

Introduction to Computer Systems
https://xjtu-ics.github.io/ or http://ics.xjtu-ants.net/

2025. Spring
Xi’an Jiaotong University

Danfeng Shan

BMEEEBH

m RANAUR SRS CF =)

B Computer Systems: A Programmer’s Perspective (CSAPP 3e)

| TEI B RIET T

Computer Systems

A Programmer's Perspective, Third Edition 402 ExR19400 2SN BIERZH
s RaAS . ERRSEAS. MUK, BFTEAYE. MMNEISMR.
$:BBEI\.L_E$M MEKETAS, FIMRETAS, bk, HE, B0, HERA. FAS
TEiM EXiM
FE. #HE. A, . B =. IR, ¥R, =
RiFE. FE. DRAL. X B2Hr. EE. L. EE
K. EDERAIL. EiHR ZEE. BARL kB, K=
1o - 3. EE. BEHRE, \ =%
- Qooeo' ,HEEE"E\ {ﬁﬁgx L\)\@'ﬁu
| REM. SEELES | @ S
i cormnne JEM BRI, =%
B\, miE. 5. RIS .
g J6=M
RS £E. MISK. £E. B

SHMELLIL., TE. BR%E SHEMAZRRINE

5%

B Ciiaf)ridil % it (K&R)
B #ERS S (OSTEP)

O
TCPL#hh Biig R

do

—a—

CRYFREIiG CEEZRAERLBEER
A, BT

SillF59.4

SHRNEEG RS EERCIES

kﬁi‘EﬁZE
Hi

. Operating
. - Systems

s AL

BIRRRITS9.7
ZENERIERGEHN

BEBSIRIERSH 27T A, FARFDIFALE

M —=IR

SES SE5FH

EENLESERD
ERFRINSBNERT
Fit=ss R
ZERING
o EAE
S et
EFiE=s
P42 9t
HiTmiz
IR RE5H

RN

o
Y

o H b A

o

o Hh b

BF AR —K

A& SEFH

datalab
bomblab
attacklab
cachelab
optlab
loadderlab

S H A NDNDN

S&HE

B P SE 10%

O B, et BRRIZE RS, e
m i H 9k 50%

O Auto-Grading & EEMHRES A T %)

O Anti-CheatingZ 4t H g Cath b 2%

O kg, —2a%IAU;mi H 928k 800
B R ik 40%

O VL fiLab N AT

KT EENLRHFE

B CRRBE: Linux/GCC
O RS EREERLE R ST 25 (1ICSServer)
O UL S I Makefile
O #4&Bootcamp, B APk |- T
AR A R
O https://xjtu-ics.github.io/ B http://ics.xjtu-ants.net/
O AR 955 515
O3 i | B A (TR k5 A e R O o
O http://class.xjtu.edu.cn/course/88273
O iRz, [HaHYa TGRSy

KT EENLRHFE

TR AN
Wl Rf I] 45 B
O X iRA E12s. ek HIYIRRAEReN S
O v BXiRT4E@
O fl: B4 labis 22 At R] 4 S LA 5k
W A M

%\g ﬁ >
» Cimiz * vim
_ * Make/Cmake
* Linuxap<21T . Git
* ssh * Google

* gcc/gdb

EER

B Piazza: — X & E Petk 2R FE S %68 In

O 7 Me%4E: https://piazza.com/stu.xjtu.edu.cn/spring2025/xjtuics

®

B QQIE: APRUEREA)8 AR GE wE it &
B X —: Office Hour
(PRI E)

ics25-A4 B

S 1030663999

W B [EEA RO

Course Overview

What you have known

Write a program i NN
How programs are executed!?

Details of each component

What you are about to learn

Overview

B Representing Program (Chapter 2)
B Translating Program (Chapter 3&4)
B Executing Program (Chapter 7&8&9)

O Hardware Organization

B Memory Architecture (Chapter 6)

B Operating System

Representing Program

S L A W N =

#include <stdio.h>

int main()

4

X

printf ("hello, world\n");

The hello program

code/intro/hello.c

code/intro/hello.c

Representing Program

B Source program from the computer’s perspective
O A sequence of bits (0 or 1)
O 8-bit chunks = bytes

O Each byte represents some text character

OO0 ASCII standard

i n c 1 u d e <sp> < s t d i

36 105 110 99 108 117 100 101 32 60 115 116 100 105
h > \n \n i n t <sp> m a i n ()
104 62 10 10 105 110 116 32 109 97 105 110 40 41
\n <sp> <sp> <sp> <sp> p r i n t f (" h

10 32 32 32 32 112 114 105 110 116 102 40 34 104
1 o , <sp> w o r 1 d \ n ") ;
108 111 44 32 119 111 114 108 100 92 110 34 41 59

What about Chinese Character?

o
111

\n
10

e
101

\n
10

46
123
108

125

Representing Program

B Source program from the computer’s perspective
O A sequence of bits (0 or 1)
O 8-bit chunks = bytes
O Each byte represents some text character
O ASCII standard
B All information in a system is represented as a bunch of bits
O Integer, floating number, text character, ...

O How to distinguish?

o Contexts!

B Lessons Leaned

O As a programmer, we need understand machine representations of numbers

Translating Program

B C program is a high-level language
O Why: Easy to be understood by human
B Machine only execute instructions (i.e., low-level machine language)

O A binary disk file (called executable object files)

unix> gcc -o hello hello.c

l printf.o

hello.c Pre- hello.i |Compi|er| hello.s |[Assembler] hello.o Linker | hello

el (ccl) (as) (1d)
Source PP Modified Assembly Relocatable Executable

program source program object object
(text) program (text) programs program
(text) (binary) (binary)

Translating Program

B Preprocessing phase (cpp)

O Modifies the original C program according to directives that begin with the #

character

O hello.c:Read the contents of stdio.h and insert it into the program

hello

text printf.o
Pre- . . |—' :

hello.c - rocessor hello.i | Compiler | hello.s | Assembler| hello.o | Linker

> E’C°) " (cc1) " (as) (1d)
Source oP Modified Assembly Relocatable
program source program object
(text) program (text) programs

(text) (binary)

1
2

3
4
5
6

| #include <stdio.h> |

int main()

{

printf ("hello, world\n");

}

code/intro/hello.c

code/intro/hello.c

[
»

Executable
object
program
(binary)

Translating Program

B Compilation phase (cc1)

O Translates the C to an assembly-language program

O Assembly-language

o Also in a standard text form

O Each statement exactly describes one low-level machine-language instruction

hello.c

A 4

Source

Pre-
processor

(<pP)

program
(text)

hello.i | Compiler | hello.s
1 (ccl) -
Modified Assembly
source program
program (text)

(text)

Assembler

(as)

printf.o

L,

hello.o

»
Ll

Relocatable

Linker
(1d)

hello

[
»

object
programs
(binary)

Executable
object
program
(binary)

Translating Program

B Assembly phase (as)

O Translates hello. s into machine-language instructions

0 Package into relocatable object program

hello.c

A 4

Source

Pre-
processor

(<pP)

program
(text)

hello.i | Compiler | hello.s
1 (ccl) -
Modified Assembly
source program
program (text)

(text)

Assembler

(as)

printf.o

L,

hello.o

»
Ll

Relocatable

Linker
(1d)

hello

object
programs
(binary)

[
»

Executable
object
program
(binary)

Translating Program

B |inking phase

O Where to find prinf?

o printf.o

O Provided by Standard C library

O Merge hello.o and prinf.o

O Result: hello (i.e., executable object file)

Linker

(Id)

hello

[
»

printf.o
Pre- . : >
hello.c hello.i | Compiler | hello.s | Assembler | hello.o
»| processor > > >
(cpp) (ccl) (as)
Source PP Modified Assembly Relocatable
program source program object
(text) program (text) programs
(text) (binary)

Executable
object
program
(binary)

Why we need to understand this

B Eliminating bugs
O #define min(x, y) x <y ? x : y [exampledl.c]
B Optimizing program performance
O If-else vs. switch-case
O foo * 1024 » foo << 10
B Understanding link-time errors
O undefined reference to....
B Avoiding security holes

O Buffer overflow

Executing Program

unix> ./hello | Shell loads and runs the program

hello, world
unix>

Hardware Organization

CPU

Register file

PC ALU

System bus Memory bus

= o) l Main
bridge memory

11

Expansion slots for
other devices such

USB Graphics Disk as network adapters
controller adapter controller

A

T T i v

Mouse Keyboard Display hello executable
W stored on disk

Hardware organization of a typical system

Bus interface

B Buses

‘ I/0O bus

CPU

Hardware Organization

_Pc |

Register file

ALU

Bus interface

System bus

I/O
bridge

Memory bus

Main
memory

JU)

M

USB Graphics
controller adapter
ouse Keyboard Display

other devices such

Disk
controller

as network adapters

A

v

hello executable
stored on disk

Hardware Organization

B |/O Devices (Chapter 6&10)

CPU
Register file
PC | ALU
System bus Memory bus
& ,
. I/O Main
Bus interface bridge memory
I/0 bus Q D D ,
. _ other devices such
USB Graphics Disk as network adapters
controller adapter controller
A
A4
Mouse Keyboard Display

hello executable
stored on disk

Hardware Organization

B Main Memory (Chapter 6)

O Temporary storage

CPU
Register file
PC ALU
System bus
'y
. I/O
Bus interface bridge
I/O bus
uUSB Graphics
controller adapter
Mouse Keyboard Display

Memory bge

l

Main
memory

RIS

Expansion slots for
other devices such

Disk
controller

as network adapters

A

v

hello executable
stored on disk

Hardware Organization

B Processor (Chapter 4)

CPU
Register file
PC | ALU
System bus
e
. I/O
Bus interface bridge
I/0O bus
USB Graphics
controller adapter
Mouse Keyboard Display

Memory bus

Main
memory

JU

Expansion slots for
other devices such

Disk
controller

as network adapters

A

A4

hello executable
stored on disk

Executing Program

B Shell read “./hello” from keyboard into a register

B Store it into memory

CPU
Register file
ALU
T ?m bus Memory bus
Bus inttl.rface = I/0 l » Main | “hello”
unix> . / ‘hello i bridge memory

hello, world

unix> /O bus D D D

Expansion slots for
other devices such

USB Graphics Disk as network adapters
controllgr adapter controller
T I l
Mouse Keyboard Display -
User W
types

“hello”

Executing Program

B |Load “hello” into main memory

O Copies the code and data from disk to main memory

O DMA

CPU

Register file

PC | ALU
g

Bus interface

USB Graphics

controller adapter
Mouse Keyboard Display

System bus Memory bus

l

/0 s Main [“hello, world\n”
bridge memory
hello code

I/O bus D D D)
Expansion slots for
other devices such

Disk as network adapters
controller

- hello executable
Disk stored on disk

Executing Program

B Execute the machine-language instructions

O Copy “hello, world\n” from memory to the registers

O Copy from registers to the display device

CPU

Register file

ALU

IEI_
Bl

Bus interface

?m bus Memory bus
I/0 l Main | “hello, world\n”
bridge Memory| ye110 code

\ I/O bus

USB Graphics
controller adapter
Mouse Keyboard Display
“hello, world\n”

1

Expansion slots for
other devices such

Disk as network adapters
controller

A

v

hello executable
W stored on disk

Memory Architecture

B Spends a lot of time moving information from one place to another!
B Disk vs. Main memory
O 1,000x larger
O 10,000,000x slower
B Registers vs. Main memory
O 100s bytes vs. 10s GB
O 100x faster
B Laws
O Larger:slower

O Faster : more expensive

Memory Architecture

B Cache

O SRAM
O 10s MB (Intel i7-11700, |6MB Cache)

O 5x slower than registers

O 5-10x faster than main memory

CPU chip

Register file

Cachg ALU
memories \

System bus Memory bus

7

| I/O l

bridge

Bus interface

Main
memory

B Cache

Memory Architecture

Processor package

Core 0 Core 3
Regs
L1 L1
d-cache i-cache

L2 unified cache L2 unified cache

L3 unified cache
(shared by all cores)

‘ Main memory |

Intel Core i7

Memory Architecture

B Memory hierarchy

O Speed — Registers/Cache

O Size — Disks
A
Smaller, CPU registers hold words
faster, retrieved from cache memory.
and L1: / L1 cache
costlier (SRAM) L1 cache holds cache lines
(per byte) retrieved from L2 cache.
storage L2: L2 cache
gevicen (PRAN) L2 cache holds cache lines
retrieved from L3 cache.
L3: L3 cache
Larger, AL L3 cache holds cache lines
slower, . retrieved from memory.
and L4: Main memory
cheaper (RRAN) Main memory holds disk blocks
(per byte) retrieved from local disks.
storage L5: Local secondary storage
devices (local disks) Local disks hold files

retrieved from disks on
Y L6: Remote secondary storage remote network server.
(distributed file systems, Web servers)

Operating System

B A layer of software between application and hardware

0 Protect the hardware

O Applications can be evil and vulnerable

O Provide applications with simple and uniform mechanisms

O Low-level hardware devices are quite different from each other

Application programs

Operating system

Processor

Main memory

I/O devices

Software

} Hardware

Summary

B |nformation = bits + context
B Programs are translated by compilers

O From ASCII text to binary executable file

B Memory: store binary instructions
B Processor: execute binary instructions
B Memory is important

O Computers spend most of their time copying data

O Memory hierarchy

O Speed: register/cache
o Size: disk

B Operating System: managing hardware

